If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6y^2-19y+20=0
a = -6; b = -19; c = +20;
Δ = b2-4ac
Δ = -192-4·(-6)·20
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-29}{2*-6}=\frac{-10}{-12} =5/6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+29}{2*-6}=\frac{48}{-12} =-4 $
| -x^2+6x=7.2 | | -10x+16=2x-15 | | 4/5n-1/5=2/5n4/5 | | 5(x=6)-3=37 | | 4(y-5)=-15 | | 10x+7=-4x+3 | | 5(-10-6f)=-290 | | 5x+4+x+6+2x-1+4x=45 | | 22=2(4h-9) | | (0.000018)=((x^2)/(0.075-x) | | 8n-7=5(n-5) | | 2x+3=1/8 | | -154=7(5n+3) | | 5(n+4)+8=5n+20 | | 3(2x+4)−x=23 | | 18=1/3x+2 | | 1.74=(35.7-x)/2 | | 18x-4=3x+7 | | 0.3x+137.1=180 | | 5x-6=x+138 | | 5-x+7=125 | | 1/2(x−40)=6+7x | | 6x+11=5x+8 | | 3x/7-x-5/3=x+2/5 | | 3.5x=x+25 | | x/5=160 | | z−39=41 | | y+11/2=33/4 | | x^2=0.528925619835 | | s−14=11 | | 3,6/x=-8 | | 41+7x-7=90 |